V1

2022/03/19阅读：56主题：默认主题

# Markdown常见数学符号和运算

## 1. Greek and Hebrew letters

\alpha \kappa \psi \digamma \Delta \Theta
\beta \lambda \rho \varepsilon \Gamma \Upsilon
\chi \mu \sigma \varkappa \Lambda \Xi
\delta \nu \tau \varphi \Omega \aleph
\epsilon o \theta \varpi \Phi \beth
\eta \omega \upsilon \varrho \Pi \daleth
\gamma \phi \xi \varsigma \Psi \gimel
\iota \pi \zeta \vartheta \Sigma

## 2. LaTex math constructs

\frac{abc}{xyz} \overline{abc} \overrightarrow{abc}
f' \underline{abc} \overleftarrow{abc}
\sqrt{abc} \widehat{abc} \overbrace{abc}
\sqrt[n]{abc} \widetilde{abc} \underbrace{abc}

## 3. Delimiters

 | \ { \lfloor / \Uparrow
\vert \ } \rfloor \backslash \uparrow \lrcorner
\ | \langle \lceil [ \Downarrow \ulcorner
\Vert \rangle \rceil ] \downarrow \urcorner

## 4. Variable-sized symbols(displayed formulae show larger version)

\sum \int \biguplus \bigoplus \bigvee
\prod \oint \bigcap \bigotimes \bigwedge
\coprod \iint \bigcup \bigodot \bigsqcup

## 5. Standard Function Names

\arccos \arcsin \arctan \arg
\cos \cosh \cot \coth
\csc \deg \det \dim
\exp \gcd \hom \inf
\ker \lg \lim \liminf
\limsup \ln \log \max
\min \Pr \sec \sin
\sinh \sup \tan \tanh

## 6. Binary Operation/Relation Symbols

\ast \pm \cap \lhd
\star \mp \cup \rhd
\cdot \amalg \uplus \triangleleft
\circ \odot \sqcap \triangleright
\bullet \ominus \sqcup \unlhd
\bigcirc \oplus \wedge \unrhd
\diamond \oslash \vee \bigtriangledown
\times \otimes \dagger \bigtriangleup
\div \wr \ddagger \setminus
\centerdot \Box \barwedge \veebar
\circledast \boxplus \curlywedge \curlyvee
\circledcirc \boxminus \Cap \Cup
\circleddash \boxtimes \bot \top
\dotplus \boxdot \intercal \rightthreetimes
\divideontimes \square \doublebarwedge \leftthreetimes
\equiv \leq \geq \perp
\cong \prec \succ \mid
\neq \preceq \succeq \parallel
\sim \ll \gg \bowtie
\simeq \subset \supset \Join
\approx \subseteq \supseteq \ltimes
\asymp \sqsubset \sqsupset \rtimes
\doteq \sqsubseteq \sqsupseteq \smile
\propto \dashv \vdash \frown
\models \in \ni \notin
\approxeq \leqq \geqq \lessgtr
\thicksim \leqslant \geqslant \lesseqgtr
\backsim \lessapprox \gtrapprox \lesseqqgtr
\backsimeq \lll \ggg \gtreqqless
\triangleq \lessdot \gtrdot \gtreqless
\circeq \lesssim \gtrsim \gtrless
\bumpeq \eqslantless \eqslantgtr \backepsilon
\Bumpeq \precsim \succsim \between
\doteqdot \precapprox \succapprox \pitchfork
\thickapprox \Subset \Supset \shortmid
\fallingdotseq \subseteqq \supseteqq \smallfrown
\risingdotseq \sqsubset \sqsupset \smallsmile
\varpropto \preccurlyeq \succcurlyeq \Vdash
\therefore \curlyeqprec \curlyeqsucc \vDash
\because \blacktriangleleft \blacktriangleright \Vvdash
\eqcirc \trianglelefteq \trianglerighteq \shortparallel
\neq \vartriangleleft \vartriangleright \nshortparallel
\ncong \nleq \ngeq \nsubseteq
\nmid \nleqq \ngeqq \nsupseteq
\nparallel \nleqslant \ngeqslant \nsubseteqq
\nshortmid \nless \ngtr \nsupseteqq
\nshortparallel \nprec \nsucc \subsetneq
\nsim \npreceq \nsucceq \supsetneq
\nVDash \precnapprox \succnapprox \subsetneqq
\nvDash \precnsim \succnsim \supsetneqq
\nvdash \lnapprox \gnapprox \varsubsetneq
\ntriangleleft \lneq \gneq \varsupsetneq
\ntrianglelefteq \lneqq \gneqq \varsubsetneqq
\ntriangleright \lnsim \gnsim \varsupsetneqq
\ntrianglerighteq \lvertneqq \gvertneqq

## 7. Arrow symbols

\leftarrow\leftarrow \longleftarrow \uparrow
\Leftarrow \Longleftarrow \Uparrow
\rightarrow \longrightarrow \downarrow
\Rightarrow \Longrightarrow \Downarrow
\leftrightarrow \longleftrightarrow \updownarrow
\Leftrightarrow \Longleftrightarrow \Updownarrow
\mapsto \longmapsto \nearrow
\hookleftarrow \hookrightarrow \searrow
\leftharpoonup \rightharpoonup \swarrow
\leftharpoondown \rightharpoondown \nwarrow
\dashrightarrow \dashleftarrow \leftleftarrows
\leftarrowtail \looparrowleft \leftrightharpoons
\curvearrowleft \circlearrowleft \Lsh
\upuparrows \upharpoonleft \downharpoonleft
\multimap \leftrightsquigarrow \rightrightarrows
\rightleftarrows \rightrightarrows \rightleftarrows
\rightleftharpoons \curvearrowright \circlearrowright
\Rsh \downdownarrows \upharpoonright
\downharpoonright \rightsquigarrow
\nleftarrow \nrightarrow \nLeftarrow
\nRightarrow \nleftrightarrow \nLeftrightarrow

## 8. Miscellaneous symbols

\infty \forall \Bbbk \wp
\nabla \exists \bigstar \angle
\partial \nexists \diagdown \measuredangle
\eth \emptyset \diagup \sphericalangle
\clubsuit \varnothing \Diamond \complement
\diamondsuit \imath \Finv \triangledown
\heartsuit \jmath \Game \triangle
\cdots \iiiint \hslash \blacklozenge
\vdots \iiint \lozenge \blacksquare
\ldots \iint \mho \blacktriangle
\ddots \sharp \prime \blacktriangledown
\Im \flat \square \backprime
\Re \natural \surd \circledS

## 9. Math mode accents

\acute{a} \bar{a} \acute{\acute{A}} \bar{\bar{A}}
\breve{a} \check{a} \breve{\breve{A}} ckeck{\check{A}}
\ddot{a} \dot{a} \dot{\dot{A}} \dot{\dot{A}}
\grave{a} \hat{a} \grave{\grave{A}} \hat{\hat{A}}
\tilde{a} \vec{a} \tilde{\tilde{A}} \vec{\vec{A}}

## 10. Other Styles(math mode only)

\mathcal{ABCDEFabcdef012345}
\mathbb{ABCDEFabcdef012345}
\mathfrak{ABCDEFabcdef012345}
\mathsf{ABCDEFabcdef012345}
\mathbf{ABCDEFabcdef012345}

## 11. Matrix

$$\begin{matrix}1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{matrix} \tag{1}$$
$$\left(\begin{matrix}1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end{matrix}\right) \tag{2}$$
$$\begin{pmatrix}1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & a_{m} & a_{m}^{2} & \cdots & a_{m}^{n} \\\end{pmatrix} \tag{3}$$
$$\left\{\begin{matrix}1 & 2 & \cdots & 5 \\6 & 7 & \cdots & 10 \\\vdots & \vdots & \ddots & \vdots \\\alpha & \alpha+1 & \cdots & \alpha+4 \end{matrix}\right\} \tag{4}$$
$$\begin{bmatrix}1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end{bmatrix} \tag{5}$$
$$\begin{vmatrix}1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end{vmatrix} \tag{6}$$
$$\begin{Vmatrix}1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9\end{Vmatrix} \tag{7}$$
$$\begin{array}{|c|c|c|}\hline 2&9&4 \\\hline 7&5&3 \\\hline 6&1&8 \\\hline\end{array} \tag{8}$$
$$\begin{array}{cc|c}A & B & F \\\hline0 & 0 & 0 \\0 & 1 & 1 \\1 & 0 & 1 \\1 & 1 & 1 \\\end{array} \tag{9}$$
$$\left[\begin{array}{c|cc}1 & 2 & 3 \\\hline4 & 5 & 6 \\7 & 8 & 9\end{array}\right] \tag{10}$$
\begin{aligned}a &= b + c \\&= d + e + f\end{aligned} \tag{11}
$$\begin{cases}3x + 5y + z \\7x - 2y + 4z \\-6x + 3y + 2z\end{cases} \tag{12}$$
$$f(n) =\begin{cases} n/2, & \text{if }n\text{ is even} \\3n+1, & \text{if }n\text{ is odd}\end{cases} \tag{13}$$