阿酷尔工作室

V1

2022/03/12阅读:36主题:默认主题

并查集

并查集

并查集被称为是最简介优雅的数据结构之一,主要用来解决一些元素分组的问题,管理一系列不想交的集合,并支持以下两种操作

  1. 合并(Union): 把两个不相交的集合合并为一个集合
  2. 查询(Find) :查询两个元素是否在同一个集合中

问题示例:

(洛谷P1551)亲戚

题目背景

若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。

题目描述

规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。

输入格式

第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。

以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。

接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。

输出格式

P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。

这其实是一个很有现实意义的问题。我们可以建立模型,把所有人划分到若干个不相交的集合中,每个集合里的人彼此是亲戚。为了判断两个人是否为亲戚,只需看它们是否属于同一个集合即可。因此,这里就可以考虑用并查集进行维护了。

并查集的引入

并查集的重要思想在于,用集合中的一个元素代表集合。我曾看过一个有趣的比喻,把集合比喻成帮派,而代表元素则是帮主。接下来我们利用这个比喻,看看并查集是如何运作的。

最开始,所有大侠各自为战。他们各自的帮主自然就是自己。(对于只有一个元素的集合,代表元素自然是唯一的那个元素)

现在1号和3号比武,假设1号赢了(这里具体谁赢暂时不重要),那么3号就认1号作帮主(合并1号和3号所在的集合,1号为代表元素)

现在2号想和3号比武(合并3号和2号所在的集合),但3号表示,别跟我打,让我帮主来收拾你(合并代表元素)。不妨设这次又是1号赢了,那么2号也认1号做帮主。

现在我们假设4、5、6号也进行了一番帮派合并,江湖局势变成下面这样:

现在假设2号想与6号比,跟刚刚说的一样,喊帮主1号和4号出来打一架(帮主真辛苦啊)。1号胜利后,4号认1号为帮主,当然他的手下也都是跟着投降了。

好了,比喻结束了。如果你有一点图论基础,相信你已经觉察到,这是一个状的结构,要寻找集合的代表元素,只需要一层一层往上访问父节点(图中箭头所指的圆),直达树的根节点(图中橙色的圆)即可。根节点的父节点是它自己。我们可以直接把它画成一棵树:

(好像有点像个火柴人?)

用这种方法,我们可以写出最简单版本的并查集代码。

初始化

int fa[MAXN];
inline void init(int n)
{
    for (int i = 1; i <= n; ++i)
        fa[i] = i;
}

假如有编号为1, 2, 3, ..., n的n个元素,我们用一个数组fa[]来存储每个元素的父节点(因为每个元素有且只有一个父节点,所以这是可行的)。一开始,我们先将它们的父节点设为自己。

查询

int find(int x)
{
    if(fa[x] == x)
        return x;
    else
        return find(fa[x]);
}

我们用递归的写法实现对代表元素的查询:一层一层访问父节点,直至根节点(根节点的标志就是父节点是本身)。要判断两个元素是否属于同一个集合,只需要看它们的根节点是否相同即可。

合并

inline void merge(int i, int j)
{
    fa[find(i)] = find(j);
}

合并操作也是很简单的,先找到两个集合的代表元素,然后将前者的父节点设为后者即可。当然也可以将后者的父节点设为前者,这里暂时不重要。本文末尾会给出一个更合理的比较方法。

路径压缩

最简单的并查集效率是比较低的。例如,来看下面这个场景:

现在我们要merge(2,3),于是从2找到1,fa[1]=3,于是变成了这样:

然后我们又找来一个元素4,并需要执行merge(2,4):

从2找到1,再找到3,然后fa[3]=4,于是变成了这样:

大家应该有感觉了,这样可能会形成一条长长的,随着链越来越长,我们想要从底部找到根节点会变得越来越难。

怎么解决呢?我们可以使用路径压缩的方法。既然我们只关心一个元素对应的根节点,那我们希望每个元素到根节点的路径尽可能短,最好只需要一步,像这样:

其实这说来也很好实现。只要我们在查询的过程中,把沿途的每个节点的父节点都设为根节点即可。下一次再查询时,我们就可以省很多事。这用递归的写法很容易实现:

合并(路径压缩)

int find(int x)
{
    if(x == fa[x])
        return x;
    else{
        fa[x] = find(fa[x]);  //父节点设为根节点 压缩路径,将x的父节点 指向find出来的根节点
        return fa[x];         //返回父节点
    }
}

以上代码常常简写为一行:

int find(int x)
{
    return x == fa[x] ? x : (fa[x] = find(fa[x]));
}

注意赋值运算符=的优先级没有三元运算符?:高,这里要加括号。

路径压缩优化后,并查集的时间复杂度已经比较低了,绝大多数不相交集合的合并查询问题都能够解决。然而,对于某些时间卡得很紧的题目,我们还可以进一步优化。

按秩合并

有些人可能有一个误解,以为路径压缩优化后,并查集始终都是一个菊花图(只有两层的树的俗称)。但其实,由于路径压缩只在查询时进行,也只压缩一条路径,所以并查集最终的结构仍然可能是比较复杂的。例如,现在我们有一棵较复杂的树需要与一个单元素的集合合并:

假如这时我们要merge(7,8),如果我们可以选择的话,是把7的父节点设为8好,还是把8的父节点设为7好呢?

当然是后者。因为如果把7的父节点设为8,会使树的深度(树中最长链的长度)加深,原来的树中每个元素到根节点的距离都变长了,之后我们寻找根节点的路径也就会相应变长。虽然我们有路径压缩,但路径压缩也是会消耗时间的。而把8的父节点设为7,则不会有这个问题,因为它没有影响到不相关的节点。

这启发我们:我们应该把简单的树往复杂的树上合并,而不是相反。因为这样合并后,到根节点距离变长的节点个数比较少。

我们用一个数组rank[]记录每个根节点对应的树的深度(如果不是根节点,其rank相当于以它作为根节点的子树的深度)。一开始,把所有元素的rank()设为1。合并时比较两个根节点,把rank较小者往较大者上合并。

路径压缩和按秩合并如果一起使用,时间复杂度接近,但是很可能会破坏rank的准确性。

初始化(按秩合并)

inline void init(int n)
{
    for (int i = 1; i <= n; ++i)
    {
        fa[i] = i;
        rank[i] = 1;
    }
}

合并(按秩合并)

inline void merge(int i, int j)
{
    int x = find(i), y = find(j);    //先找到两个根节点
    if (rank[x] <= rank[y])
        fa[x] = y;
    else
        fa[y] = x;
    if (rank[x] == rank[y] && x != y)
        rank[y]++;                   //如果深度相同且根节点不同,则新的根节点的深度+1
}

为什么深度相同,新的根节点深度要+1?如下图,我们有两个深度均为2的树,现在要merge(2,5):

这里把2的父节点设为5,或者把5的父节点设为2,其实没有太大区别。我们选择前者,于是变成这样:

显然树的深度增加了1。另一种合并方式同样会让树的深度+1。

并查集的应用

我们先给出亲戚问题的AC代码:

#include <cstdio>
#define MAXN 5005
int fa[MAXN], rank[MAXN];
inline void init(int n)
{
    for (int i = 1; i <= n; ++i)
    {
        fa[i] = i;
        rank[i] = 1;
    }
}
int find(int x)
{
    return x == fa[x] ? x : (fa[x] = find(fa[x]));
}
inline void merge(int i, int j)
{
    int x = find(i), y = find(j);
    if (rank[x] <= rank[y])
        fa[x] = y;
    else
        fa[y] = x;
    if (rank[x] == rank[y] && x != y)
        rank[y]++;
}
int main()
{
    int n, m, p, x, y;
    scanf("%d%d%d", &n, &m, &p);
    init(n);
    for (int i = 0; i < m; ++i)
    {
        scanf("%d%d", &x, &y);
        merge(x, y);
    }
    for (int i = 0; i < p; ++i)
    {
        scanf("%d%d", &x, &y);
        printf("%s\n", find(x) == find(y) ? "Yes" : "No");
    }
    return 0;
}

分类:

后端

标签:

后端

作者介绍

阿酷尔工作室
V1

恒生研究院