Lanson

V1

2022/11/13阅读:15主题:丘比特忙

湖仓一体电商项目(二十二):实时任务执行流程

实时任务执行流程

目前暂时将项目在本地执行,执行顺序如下:

一、准备环境

这里默认HDFS、Hive、HBase、Kafka环境已经准备,启动maxwell组件监控mysql业务库数据:

#在Kafka中创建好对应的kafka topic(已创建的topic,可忽略,避免重复创建)
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-USER-LOG-DATA --partitions 3 --replication-factor 3

./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DB-BUSSINESS-DATA --partitions 3 --replication-factor 3


./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-ODS-TOPIC --partitions 3 --replication-factor 3

./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DIM-TOPIC --partitions 3 --replication-factor 3

./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DWD-BROWSE-LOG-TOPIC --partitions 3 --replication-factor 3

./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DWS-BROWSE-LOG-WIDE-TOPIC --partitions 3 --replication-factor 3

#启动maxwell
[root@node3 ~]# cd /software/maxwell-1.28.2/bin
[root@node3 bin]#  maxwell --config ../config.properties

#在Hive中创建好需要的Iceberg各层的表
add jar /software/hive-3.1.2/lib/iceberg-hive-runtime-0.12.1.jar;
add jar /software/hive-3.1.2/lib/libfb303-0.9.3.jar;

CREATE TABLE ODS_PRODUCT_CATEGORY (
id string,
p_id string,
name string,
pic_url string,
gmt_create string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_PRODUCT_CATEGORY/' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled''true',
'write.metadata.previous-versions-max' = '3'
);

CREATE TABLE ODS_PRODUCT_INFO (
product_id string,
category_id string,
product_name string,
gmt_create string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_PRODUCT_INFO/' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled''true',
'write.metadata.previous-versions-max' = '3'
);

CREATE TABLE ODS_BROWSELOG  (
 log_time string,
 user_id string,
 user_ip string,
 front_product_url string,
 browse_product_url string,
 browse_product_tpcode string,
 browse_product_code string,
 obtain_points string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_BROWSELOG/' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled''true',
'write.metadata.previous-versions-max' = '3'
);

CREATE TABLE DWD_BROWSELOG  (
 log_time string,
 user_id string,
 user_ip string,
 front_product_url string,
 browse_product_url string,
 browse_product_tpcode string,
 browse_product_code string,
 obtain_points string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/DWD_BROWSELOG/' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled''true',
'write.metadata.previous-versions-max' = '3'
);

CREATE TABLE DWS_BROWSE_INFO (
log_time string,
user_id string,
user_ip string,
product_name string,
front_product_url string,
browse_product_url string,
first_category_name string,
second_category_name string,
obtain_points string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler' 
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/DWS_BROWSE_INFO/' 
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled''true',
'write.metadata.previous-versions-max' = '3'
);

#启动Clickhouse
[root@node1 ~]# service clickhouse-server start

#在Clickhouse中创建好对应表
create table dm_product_visit_info(
 current_dt String,
 window_start String,
 window_end String,
 first_cat String,
 second_cat String,
 product String,
 product_cnt UInt32
) engine = MergeTree() order by current_dt;

二、启动Flink代码

依次启动如下Flink代码:”ProduceKafkaDBDataToODS.scala”、“ProduceKafkaLogDataToODS.scala”、“DimDataToHBase.scala”、“ProduceKafkaODSDataToDWD.scala”、“ProduceBrowseLogToDWS.scala”、“ProcessBrowseLogInfoToDM.scala”代码。各个代码中Kafka Connector属性“scan.startup.mode”设置为“latest-offset”,从最新位置消费数据。

注意:代码执行时可以设置使用内存参数:-Xmx500m -Xms500m

三、启动数据采集接口代码

启动项目“LakeHouseDataPublish”发布数据。

四、启动模拟数据代码

启动项目“LakeHouseMockData”中模拟向数据库中生产数据代码“RTMockDBData.java”,此代码中只需要向MySQL生产用户登录数据即可。

启动项目“LakeHouseMockData”中向日志采集接口生产日志的代码“RTMockUserLogData.java”。

这里如果想和第一个业务一起运行还需要将第一个业务“ProduceUserLogInToDWS.scala”、“ProcessUserLoginInfoToDM.scala”两个代码。

分类:

后端

标签:

大数据

作者介绍

Lanson
V1

CSDN大数据领域博客专家