生信分析笔记

V1

2022/09/22阅读:19主题:山吹

R语言学习丨数据重塑、拆分与组合基础知识,merge、melt、cast函数介绍

今天学习R语言中数据重塑相关基础知识,主要有merge、melt、cast函数用法示例。公众号:生信分析笔记

合并数据框

merge()函数能够以一列为参考合并两个不同数据框,相当于数学中的布尔运算“交集、并集、反补集”,没有的元素定为NA,语法格式如下:

merge(x, y,  #数据框
by = intersect(names(x), names(y)), #制定匹配列名称
by.x = by, by.y = by, #指定两个数据框中匹配列名称,默认情况下使用两个数据框中相同列名称。
all = FALSE,  #默认取交集,若TRUE则为并集
all.x = all,  #取x的全集和交集
all.y = all,  #取y的全集和交集
sort = TRUE,  #排序,默认打开
suffixes = c(".x",".y"), #后缀,当合并后的x,y矩阵有相同的列名时,使用后缀表明出处,默认后缀为.x, .y
no.dups = TRUE#是否将上一个参数扩展到更多情况下,以避免出现重复的列名
incomparables = NULL, …) 

by.x和by.y是用来告诉merge函数取出x(第一个数据框)的by.x列和y(第二个数据框)的by.y列中具有相同取值的行进行合并,其他的丢掉,另外如果指定了其中一个,那么另一个就必须同时指定,不然就报错。

老规矩,接下来演示:

#合并两个不同内容的数据框,交并补三种方式。
> df1 <- data.frame(id = c(1:4),name = c("jack","jeson","lucky","poler"))
> df2 <- data.frame(id = c(2,4,6),home = c("zhong","han","mei"))

上面咱已经建立了俩数据框,df1有4个ID,每个id对应4个名字,共4行。

# 生成两个数据框,行数不一样,但有重叠区域
> df3 <- merge(x = df1,y = df2,by = "id")
#以id列为准进行合并,两个数据框中只有序号2、4同时存在,默认取交集。
print(df3)
  id  name  home
1  2 jeson zhong
2  4 poler   han

通过id为准来合并两个数据框,其中df1中id的2和4在df2中也存在,属于两者共同交集,因此输出的只有这俩。

> df4 <- merge(x=df1,y=df2,by="id",all=TRUE)
#输出两个数据框的并集
print(df4)
  id  name  home
1  1  jack  <NA>
2  2 jeson zhong
3  3 lucky  <NA>
4  4 poler   han
5  6  <NA>   mei

添加了all=TRUE,表示全部合并,取并集,没有元素用NA,共6条结果。

> df5 <- merge(x=df1,y=df2,by="id",all.x=TRUE)
#输出(df1的全部)和(df1与df2的交集)
print(df5)
  id  name  home
1  1  jack  <NA>
2  2 jeson zhong
3  3 lucky  <NA>
4  4 poler   han

all.x表示左边数据框的全部数据都保留,下面同理输出右边数据框的全部。

> df6 <- merge(x=df1,y=df2,by="id",all.y=TRUE)
#输出(df2的全部)和(df1与df2的交集)
print(df6)
  id  name  home
1  2 jeson zhong
2  4 poler   han
3  6  <NA>   mei

为了更好的理解,用下图来说明,all参数控制合并时布尔运算逻辑。

数据整合拆分

R 语言使用 melt()cast() 函数来对数据进行整合和拆分,该功能需要借助R包来完成,首先安装R包并载入:

install.packages("MASS", repos = "https://mirrors.ustc.edu.cn/CRAN/"
install.packages("reshape2", repos = "https://mirrors.ustc.edu.cn/CRAN/"
install.packages("reshape", repos = "https://mirrors.ustc.edu.cn/CRAN/")

library(MASS)
library(reshape2)
library(reshape)

melt和dcast函数都是来自于reshape2程序包的函数,melt的作用为将宽数据转化为长数据,而dcast的作用为将长数据转化为宽数据,二者互为“逆函数”。如下图:

melt()函数

英语中melt的意思是融化,咱们可以理解为将很多数据融化成具有一定规则的数据,方便后续分析。

数据分析时,采用的数据通常是宽数据,在进行图形绘制时,常常需要将多列放置在一列中,例如需要在同一张图中绘制出三个结局的时间序列,那么就需要将原来的三个结局变量转化为一个三分类变量的列,然后将这个三分类变量映射为点图的颜色或形状等图形属性,这样就实现了绘图的需求。

一般样本数据都有很多个不同的属性和值,列表会有好多列很宽,melt函数能够将列表由宽变窄,值被按顺序排成一列了。函数的语法格式:

 melt(data, ...,  #数据集
     na.rm = FALSE, #是否删除数据中的NA
     value.name = "value"#变量名称

接下来进行实例演示,创建一个数据框,数据有两列为标识,另外两列为值,用于后续操作。

> id<- c(1122)
> lei <- c(1212)
> x1 <- c(5362)
> x2 <- c(6514)
> data_1 <- data.frame(id,lei,x1,x2)
> print(data_1)
  id lei x1 x2
1  1   1  5  6
2  1   2  3  5
3  2   1  6  1
4  2   2  2  4
> out_1 <- melt(data_1,id = c("id","lei"))
> print(out_1)
  id lei variable value
1  1   1       x1     5
2  1   2       x1     3
3  2   1       x1     6
4  2   2       x1     2
5  1   1       x2     6
6  1   2       x2     5
7  2   1       x2     1
8  2   2       x2     4

由上面的结果可以看出melt函数的作用是将原本横着排列的列堆在一个列里,每一行只留下一个值。

cast()函数

cast() 函数用于对合并对数据框进行还原,dcast() 返回数据框,语法格式如下:

dcast(
  data, #待处理的数据框
  formula, #重塑的数据格式,x~y
  fun.aggregate = NULL#聚合函数
  subset = NULL#对结果进行筛选
  drop = TRUE#是否保留默认值
  value.var = guess_value(data) #待处理的字段
)

首先,创建一个数据框,并把它用melt函数整合。

> id<- c(1122)
> time <- c(1212)
> x1 <- c(5362)
> x2 <- c(6514)
> mydata <- data.frame(id, time, x1, x2)
> md <- melt(mydata, id = c("id","time"))
> print(md)
  id time variable value
1  1    1       x1     5
2  1    2       x1     3
3  2    1       x1     6
4  2    2       x1     2
5  1    1       x2     6
6  1    2       x2     5
7  2    1       x2     1
8  2    2       x2     4

接下来,尝试用cast函数对其进行拆分。

> cast.data <- cast(md, id~variable, mean)
print(cast.data)
  id x1  x2
1  1  4 5.5
2  2  4 2.5

还可以尝试用不同的参数,以不同的方式进行拆分。~符号的前面表示列,后面表示值,用法有点类似Excel中数据透视表功能。

> time.cast <- cast(md, time~variable, mean) 
#输出内容是不同time下variable的值
print(time.cast)
  time  x1  x2
1    1 5.5 3.5
2    2 2.5 4.5
> id.time <- cast(md, id~time, mean)
#输出内容是不同id下time的值
print(id.time)
  id   1 2
1  1 5.5 4
2  2 3.5 3
> id.time.cast <- cast(md, id+time~variable)
#输出内容是不同id和不同time下variable的值
print(id.time.cast)
  id time x1 x2
1  1    1  5  6
2  1    2  3  5
3  2    1  6  1
4  2    2  2  4
> id.variable.time <- cast(md, id+variable~time)
# 输出内容是不同id和variable下time的值
print(id.variable.time)
  id variable 1 2
1  1       x1 5 3
2  1       x2 6 5
3  2       x1 6 2
4  2       x2 1 4
> id.variable.time2 <- cast(md, id~variable+time)
#输出内容是不同id下不同time和值
print(id.variable.time2)
  id x1_1 x1_2 x2_1 x2_2
1  1    5    3    6    5
2  2    6    2    1    4

参考资料:https://www.runoob.com/r

分类:

后端

标签:

数据结构与算法

作者介绍

生信分析笔记
V1

欢迎关注公众号:生信分析笔记