
前端小魔女
2022/10/31阅读:19主题:蔷薇紫
计算机底层知识之处理小数
❝生活中最大的障碍之一就是对羞辱的恐惧
❞
大家好,我是「柒八九」。
今天,我们继续「计算机底层知识」的探索。我们来谈谈关于「小数运算」的相关知识点。
如果,想了解该系列的文章,可以参考我们已经发布的文章。如下是往期文章。
文章list
你能所学到的知识点
❝❞
计算机精度缺失 「推荐阅读指数」 ⭐️⭐️⭐️ 如何用二进制表示小数 「推荐阅读指数」 ⭐️⭐️⭐️⭐️⭐️ 计算机精度缺失的原因 浮点数 「推荐阅读指数」 ⭐️⭐️⭐️⭐️⭐️ 正则表达式和EXCESS系统 「推荐阅读指数」 ⭐️⭐️⭐️⭐️⭐️
好了,天不早了,干点正事哇。
将0.1累加100次也得不到10
我们来一个计算机运算错误的例子。
function sum(){
let sum = 0;
for(let i=1;i<=100;i++){
sum +=0.1;
}
console.log(sum)
}
我们在浏览器的控制台中,运行sum()
,得到的运行结果为9.99999999999998
。这显然和我们的九年义务教育所教导的「背道而驰」。
有句话说,「雪崩的时候,没有一片雪花是无辜的」。在这段代码中,程序没错,计算机也没有发生故障,当然和所使用的语言也没有关系(选用其他的高级语言可能运算结果不同)。如果硬要找一个背锅的,那就是「计算机处理小数的机制」。
用二进制数表示小数
在计算机底层知识之二进制中我们讲过,由于计算机内部所有的信息都是以二进制数的形式来处理,因此,「整数和小数并无差别」。
在说明计算机如何用二进制数表示小数的具体方法前,我们先尝试将1011.0011
这个有小数点的二进制数转换成十进制数。
小数点「前面」部分的转换方法在计算机底层知识之二进制中介绍过。只需将各「数位」数值和「位权」相乘,然后再将相乘的结果相加即可实现。其实,针对小数点后面的部分,也是「照猫画虎」,也是将各「数位」数值和「位权」相乘的结果相加即可。

二进制数小数点前面部分的「位权」
-
第一位是 2
的0
次幂 -
第二位是 2
的1
次幂 -
第三位是 2
的2
次幂 -
以此类推
而小数点后面部分的「位权」
-
第一位是 2
的-1
次幂 -
第二位是 2
的-2
次幂 -
第三位是 2
的-3
次幂 -
以此类推
❝0次幂前面的位的位权按照
❞1
次幂、2
次幂····的方式「递增」
0次幂后面的位的位权按照-1
次幂、-2
次幂····的方式「递减」
计算机运算出错的原因
❝计算机运算出错的原因:「有一些十进制数的小数无法转换成二进制」
❞
小数点后4位用二进制数表示时的数值范围为0.0000~0.1111
。这里只能表示0.5
、0.24
、0.125
、0.0625
这四个二进制数小数点后面的位权组合而成(相加总和)的小数。

❝可以看出:「二进制数是连续的,十进制数是非连续的」
❞
在前面讲二进制
的时候,我们说,根据IC
引脚个数不同,我们可以表示位数不同的二进制数。我们可以通过增加引脚数,也就是增加二进制小数点后面的位数,与其相对应的十进制数的个数也会增加,「但是不管增加多少位,2的-〇〇
次幂怎么相加都无法得到0.1这个结果」。
实际上,十进制数0.1
转换成二进制后,会变成0.00011001100···
(1100
循环)这样的「循环小数」。这和用十进制数来表示1/3
是一样的道理。
❝计算机这个「功能有限」的机器设备,是无法处理「无限循环」的小数的
❞
因此,在遇到「循环小数」时,计算机就会根据「变量数据类型」所对应的长度将数值从「中间截断」或者「四舍五入」。
然后,我们再结合我们上面的例子,一个「循环小数」在进行存储的时候,已经被「掐头去尾」,而偏偏针对这个值,又进行了N
多次处理。不怕你不努力,就怕你,持之以恒的向偏离既定轨道的方向上移动,那么结果可想而知,是永远不会达到最终想要的结果。
浮点数
像1011.0011
这样带小数点的表现形式,在计算机内部是无法使用的。
很多编程语言中都提供了两种表示小数的数据类型,分别是「双精度浮点数」和「单精度浮点数」。
-
「双精度浮点数」用 64
位表示小数 -
「单精度浮点数」用 32
位表示小数
「浮点数」是指用「符号」、「尾数」、「基数」和「指数」这四部分表示的小数。

❝计算机内部使用的是二进制数,所以「基数是2」,因此,实际的数据中往往不考虑基数。只用「符号」、「尾数」、「指数」这三部分就可以表示「浮点数」。
❞
浮点数表现形式
浮点数的表现方式有很多中,我们采用IEEE标准
来解释。

双精度浮点数和单精度浮点数在表示同一个数值时「使用的位数」不同。
「符号部分」是指使用一个「数据位」来表示符号。「数据位是1时表示负,为0时表示正或者0」
❝数值的大小用「尾数部分」和「指数部分」来表示。即用「尾数部分 × 2的指数部分次幂」的形式来表示。
❞
-
「尾数部分」用的是「将小数点前面的值固定为1的正则表达式」 -
「指数部分」用的是「EXCESS系统表示」
正则表达式和EXCESS系统
尾数部分
❝「尾数部分」使用「正则表达式」,可以将表现形式多样的浮点数统一为一种表现形式。
❞
例如,十进制数0.75
就有很多表现形式。

虽然他们表示的都是「同一个数值」,但因为表现方法太多,计算机在处理时会比较麻烦。
因此,需要制定统一的规则:
❝十进制数的浮点数应该遵循:「小数点前面是0,小数点后面第一位不能是0」
❞
也就是说,只能用「尾数」部分是0.75
、「指数」部分是0
的方法来表示。即0.75 × 100
❝在二进制数中,我们规定:「将小数点前面的值固定为
❞1
的正则表达式」
具体来讲,就是将二进制数表示的小数「左移」或「右移」(逻辑移位
)数次后,「整数部分」的第一位变成1,「第二位之后都变成0」。
❝而且,「第一位的
❞1
在实际的数据中不保存」,因此省略该部分后就可以节省一个数据位,从而可以表示更多的数据范围。
我们,看一下1011.0011
如何用单精度浮点数的正则表达式来表示「尾数部分」。

指数部分
「指数部分」中使用的是EXCESS
系统,使用这种方式主要是「为了表示负数时不使用符号位」。
在某些情况下,在指数部分,需要通过「负〇〇次幂」的形式来表示负数。
❝「EXCESS系统」表现是指,通过将指数部分表示范围的「中间值」设置
❞0
,使得负数不需要用符号来表示。
也就是说,当「指数部分」是8位单精度浮点数
时,最大值11111111=255
的1/2
,即01111111=127
(小数部分舍弃)表示的是0
。

我们再来一个例子说明。假设有这样一个游戏,用1~13
(A~K
)的扑克牌来表示负数。此时,我们把「中间」的7
当做0
。 那么10
表示+3
,3
表示-4
。

实际运用
我们来一起看看如何用单精度浮点数来表示十进制数0.75
。

-
「符号位」:因为 0.75
是正数,所以符号位是0
0.75
转换成二进制正则表示为1.1×2-1
,按照前面介绍的就很容易知道下面的各个数值。
-
「指数部分」:为 -1
,但是用EXCESS
表示的话,就变成了01111110
。换算为十进制为126
。而EXCESS
系统中,126
代表-1
-
「尾数部分」:根据正则表达式的规则,小数点前面的第1位是 1
,因此「尾数部分」1000···
实际上表示的是1.1000···
二进制数和十六进制数关系
在以「位」为单位表示数据时,使用二进制数很方便,但如果位数太多,看起来很麻烦。因此,在实际程序中,经常用「十六进制数」来替代「二进制数」。
在一些高级语言中,只需要在数值的开头加上0x
就可以表示十六进制数。
❝二进制数的4位,正好相当于十六进制数的1位。
❞

由此可见,通过使用十六进制数,二进制数的位数能够「缩短」至原来的1/4
。
用十六进制数表示二进制「小数」时,小数点后的二进制数的4位也同样相当于十六进制数的1位。「不够4位时用0填补二进制的低位」

后记
「分享是一种态度」。
参考资料:《程序是怎样跑起来的》
「全文完,既然看到这里了,如果觉得不错,随手点个赞和“在看”吧。」

作者介绍

前端小魔女
微信公众号:前端柒八九