y

yingzi

V1

2022/04/26阅读:8主题:默认主题

Hive调优

企业级调优

一、Fetch抓取

​ Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录下的文件, 然后输出查询结果到控制台。

​ 在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive 默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走 mapreduce。

配置信息如下:

<property>
 <name>hive.fetch.task.conversion</name>
 <value>more</value>
 <description>
  Expects one of [none, minimal, more].
  Some select queries can be converted to single FETCH task minimizing latency.
  Currently the query should be single sourced not having any subquery and should not have any    aggregations or distincts (which incurs RS), lateral views and joins.
 1. none : disable hive.fetch.task.conversion
 2. minimal : SELECT STAR, FILTER on partition columns, LIMIT only
 3. more : SELECT, FILTER, LIMIT only (support TABLESAMPLE and virtual columns)
 </description>
</property>

设置hive.fetch.task.conversion

set hive.fetch.task.conversion=more; //none,minimal,more

二、本地模式

​ 大多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的。不过, 有时 Hive 的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能 会比实际 job 的执行时间要多的多。对于大多数这种情况,Hive 可以通过本地模式在单台机 器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。

用户可以通过设置 hive.exec.mode.local.auto 的值为 true,来让 Hive 在适当的时候自动 启动这个优化。

set hive.exec.mode.local.auto=true; //开启本地 mr
//设置 local mr 的最大输入数据量,当输入数据量小于这个值时采用 local mr 的方式,默认 为 134217728,即 128M
set hive.exec.mode.local.auto.inputbytes.max=50000000;
//设置 local mr 的最大输入文件个数,当输入文件个数小于这个值时采用 local mr 的方式,默 认为 4
set hive.exec.mode.local.auto.input.files.max=10;

三、表的优化

1.小表大表Join(MapJOIN)

将 key 相对分散,并且数据量小的表放在 join 的左边,可以使用 map join 让小的维度表 先进内存。在 map 端完成 join。

实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表放 在左边和右边已经没有区别。

(1)设置自动选择 Mapjoin

set hive.auto.convert.join = true; 默认为 true

(2)大表小表的阈值设置(默认 25M 以下认为是小表)

set hive.mapjoin.smalltable.filesize = 25000000;

(3)MapJoin工作机制

2.大表Join大表

1)空KEY过滤

有时 join 超时是因为某些 key 对应的数据太多,而相同 key 对应的数据都会发送到相同 的 reducer 上,从而导致内存不够。此时我们应该仔细分析这些异常的 key,很多情况下, 这些 key 对应的数据是异常数据,我们需要在 SQL 语句中进行过滤。

2)空KEY转换

有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在 join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地 分不到不同的 reducer 上

随机分布空 null 值

设置多个reduce个数:set mapreduce.job.reduces = 5;

insert overwrite table jointable
select n.* from nullidtable n full join bigtable o on nvl(n.id,rand()) = o.id;

3)SMB(Sort Merge Bucket join)

创建分桶表:

create table bigtable_buck1( id bigint,t bigint, uid string,
keyword string, url_rank int, click_num int, click_url string)
clustered by(id)
sorted by(id)
into 3 buckets //桶的个数不要超过可用CPU的核数
row format delimited fields terminated by '\t';

设置相应的参数

set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;
set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat;

3.Group By

默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾斜 了。

并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行 部分聚合,最后在 Reduce 端得出最终结果。

1)开启 Map 端聚合参数设置

(1)是否在 Map 端进行聚合,默认为 True

set hive.map.aggr = true

(2)在 Map 端进行聚合操作的条目数目

set hive.groupby.mapaggr.checkinterval = 100000

(3)有数据倾斜的时候进行负载均衡(默认是 false)

set hive.groupby.skewindata = true
当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出
结果会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果
是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二
个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证
相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

4.Count(Distinct) 去重统计

数据量小的时候无所谓,数据量大的情况下,由于 COUNT DISTINCT 操作需要用一个 Reduce Task 来完成,这一个 Reduce 需要处理的数据量太大,就会导致整个 Job 很难完成, 一般 COUNT DISTINCT 使用先 GROUP BY 再 COUNT 的方式替换,但是需要注意 group by 造成 的数据倾斜问题

执行去重 id 查询:select count(distinct id) from bigtable;
采用 GROUP by 去重 id:select count(id) from (select id from bigtable group by id) a;

5.笛卡尔积

尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1 个 reducer 来完成笛卡尔积

6.行列过滤

  • 列处理:在 SELECT 中,只拿需要的列,如果有分区,尽量使用分区过滤,少用 SELECT *
  • 行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 Where 后面, 那么就会先全表关联,之后再过滤

7.分区、分桶

四、合理设置 Map 及 Reduce 数

主要的决定因素有:input 的文件总个数,input 的文件大小,集群设置的文件块大小。

1.复杂文件增加 Map 数

当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 Map 数, 来使得每个 map 处理的数据量减少,从而提高任务的执行效率。

computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M

调整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数

2.小文件进行合并

1)在 map 执行前合并小文件,减少 map 数:CombineHiveInputFormat 具有对小文件进行合 并的功能(系统默认的格式)HiveInputFormat 没有对小文件合并功能。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

2)在 Map-Reduce 的任务结束时合并小文件的设置:

在 map-only 任务结束时合并小文件,默认 true

SET hive.merge.mapfiles = true;

在 map-reduce 任务结束时合并小文件,默认 false

SET hive.merge.mapredfiles = true;

合并文件的大小,默认 256M

SET hive.merge.size.per.task = 268435456;

当输出文件的平均大小小于该值时,启动一个独立的 map-reduce 任务进行文件 merge

SET hive.merge.smallfiles.avgsize = 16777216;

3.合理设置Reduce数

1)调整 reduce 个数方法一

(1)每个 Reduce 处理的数据量默认是 256MB

hive.exec.reducers.bytes.per.reducer=256000000

(2)每个任务最大的 reduce 数,默认为 1009

hive.exec.reducers.max=1009

(3)计算 reducer 数的公式

N=min(参数 2,总输入数据量/参数 1)

2)调整 reduce 个数方法二

在 hadoop 的 mapred-default.xml 文件中修改

设置每个 job 的 Reduce 个数

set mapreduce.job.reduces = 15;

3)reduce 个数并不是越多越好

(1)过多的启动和初始化 reduce 也会消耗时间和资源;
(2)另外,有多少个 reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;在设置 reduce 个数的时候也需要考虑这两个原则:处理大数据量利用合适的 reduce 数;使单个 reduce 任务处理数据量大小要合适;

五、并发执行

Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽 样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下, Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能 并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行 时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成。

通过设置参数 hive.exec.parallel 值为 true,就可以开启并发执行。不过,在共享集群中, 需要注意下,如果 job 中并行阶段增多,那么集群利用率就会增加。

set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个 sql 允许最大并行度,默认为8。

六、严格模式

Hive 可以通过设置防止一些危险操作:

1)分区表不使用分区过滤

将 hive.strict.checks.no.partition.filter 设置为 true 时,对于分区表,除非 where 语句中含 有分区字段过滤条件来限制范围,否则不允许执行。换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常大的数据集,而且数据增加迅速。没有 进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。

2)使用 order by 没有 limit 过滤

将 hive.strict.checks.orderby.no.limit 设置为 true 时,对于使用了 order by 语句的查询,要 求必须使用 limit 语句。因为 order by 为了执行排序过程会将所有的结果数据分发到同一个 Reducer 中进行处理,强制要求用户增加这个 LIMIT 语句可以防止 Reducer 额外执行很长一 段时间。

3)笛卡尔积

将 hive.strict.checks.cartesian.product 设置为 true 时,会限制笛卡尔积的查询。对关系型数 据库非常了解的用户可能期望在 执行 JOIN 查询的时候不使用 ON 语句而是使用 where 语 句,这样关系数据库的执行优化器就可以高效地将 WHERE 语句转化成那个 ON 语句。不幸 的是,Hive 并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情 况。

七、JVM重用

参照hadoop优化文档中jvm重用

分类:

后端

标签:

大数据

作者介绍

y
yingzi
V1