V2

2023/02/22阅读：16主题：默认主题

# MLP的相位估计

MLP可以用来估计信号的相位。通过训练带有相位估计目标的MLP,可以学习输入信号和相位之间的复杂非线性关系,从而产生相位估计。

## 相位估计

df['diff'] = df['predPhase'] - df['phase']df['diff'] = df['diff'].map(lambda e: e % (np.pi * 2))df['diff'] = df['diff'].map(lambda e: np.min((e, np.pi * 2 - e)))

## 相关概念介绍

### MLP

A Multi-Layer Perceptron (MLP) is a type of feedforward artificial neural network. It consists of multiple layers of nodes between the input and output layers, with each layer using a nonlinear activation function. MLPs use a supervised learning technique called backpropagation for training the network, where the weights and biases of the network are iteratively adjusted to minimize the error between the network's predicted output and the known target values. Due to their ability to learn complex nonlinear relationships between inputs and outputs, MLPs are commonly used for tasks such as classification and regression.

Net(  (mlp): MLP(    (0): Linear(in_features=2, out_features=4, bias=True)    (1): LeakyReLU(negative_slope=0.01, inplace=True)    (2): Dropout(p=0.0, inplace=True)    (3): Linear(in_features=4, out_features=8, bias=True)    (4): LeakyReLU(negative_slope=0.01, inplace=True)    (5): Dropout(p=0.0, inplace=True)    (6): Linear(in_features=8, out_features=4, bias=True)    (7): LeakyReLU(negative_slope=0.01, inplace=True)    (8): Dropout(p=0.0, inplace=True)    (9): Linear(in_features=4, out_features=1, bias=True)    (10): Dropout(p=0.0, inplace=True)  )  (sig): Tanh())

### Phase

Phase estimation is an important task in many signal processing applications. Given a noisy input signal, the goal is to estimate the phase of the underlying "clean" signal. Phase estimation is challenging due to the periodic and nonlinear nature of the phase. There are many approaches to phase estimation, including the Hilbert transform, minimum mean squared error estimation, and neural network-based methods.

V2